翻訳と辞書
Words near each other
・ Gaussian surface
・ Gaussian units
・ Gaussian year
・ Gaussig House
・ Gaussiran Glacier
・ Gausson
・ Gausson (physics)
・ Gauss–Boaga projection
・ Gauss–Bonnet gravity
・ Gauss–Bonnet theorem
・ Gauss–Codazzi equations
・ Gauss–Hermite quadrature
・ Gauss–Jacobi quadrature
・ Gauss–Kronrod quadrature formula
・ Gauss–Krüger coordinate system
Gauss–Kuzmin distribution
・ Gauss–Kuzmin–Wirsing operator
・ Gauss–Laguerre quadrature
・ Gauss–Legendre algorithm
・ Gauss–Legendre method
・ Gauss–Lucas theorem
・ Gauss–Manin connection
・ Gauss–Markov
・ Gauss–Markov process
・ Gauss–Markov theorem
・ Gauss–Newton algorithm
・ Gauss–Seidel method
・ Gaustad
・ Gaustad (station)
・ Gaustad Hospital


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss–Kuzmin distribution : ウィキペディア英語版
Gauss–Kuzmin distribution

In mathematics, the Gauss–Kuzmin distribution is a discrete probability distribution that arises as the limit probability distribution of the coefficients in the continued fraction expansion of a random variable uniformly distributed in (0, 1). The distribution is named after Carl Friedrich Gauss, who derived it around 1800, and Rodion Kuzmin, who gave a bound on the rate of convergence in 1929. It is given by the probability mass function
: p(k) = - \log_2 \left( 1 - \frac\right)~.
==Gauss–Kuzmin theorem==

Let
: x = \frac}
be the continued fraction expansion of a random number ''x'' uniformly distributed in (0, 1). Then
: \lim_ \mathbb \left\ = - \log_2\left(1 - \frac\right)~.
Equivalently, let
: x_n = \frac}~;
then
: \Delta_n(s) = \mathbb \left\ - \log_2(1+s)
tends to zero as ''n'' tends to infinity.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss–Kuzmin distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.